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Abstract Because they require no assumption besides the preimage or
collision resistance of hash functions, hash-based signatures are a unique
and very attractive class of post-quantum primitives. Among them, the
schemes of the sphincs family are arguably the most practical stateless
schemes, and can be implemented on embedded devices such as FPGAs
or smart cards. This naturally raises the question of their resistance to
implementation attacks.
In this paper, we propose the first fault attack against the framework
underlying sphincs, gravity-sphincs and sphincs+. Our attack allows
to forge any message signature at the cost of a single faulted message.
Furthermore, the fault model is very reasonable and the faulted signa-
tures remain valid, which renders our attack both stealthy and practical.
As the attack involves a non-negligible computational cost, we propose
a fine-grained trade-off allowing to lower this cost by slightly increasing
the number of faulted messages. Our attack is generic in the sense that
it does not depend on the underlying hash function(s) used.

1 Introduction

Hash-based signatures base their security solely on the hardness of finding col-
lisions or (second) preimages for hash functions, and do not require any addi-
tional assumption. This striking property makes them stand out even among
other post-quantum schemes. From a strict viewpoint of security assumptions,
one can hardly expect better as Rompel [Rom90] has shown that secure signa-
tures exist if and only if one-way functions exist, and Song [Son14] has extended
this result to quantum adversaries. In addition, hash-based signatures are easy
to analyze and their security does not depend on the choice of the underlying
primitive.

Since Lamport [Lam79] proposed the first hash-based signature scheme –
which could sign only one message –, several constructions have been proposed
to improve its efficiency. They can be separated in two classes: stateful and state-
less constructions. Stateful signatures, introduced by Merkle in 1990 [Mer90],
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constrain the signer to maintain a record of its used keys. Such a requirement
may generate operational problems, in particular when the key is used by mul-
tiples servers. Stateless signatures, as introduced by Goldreich [Gol86], lift this
requirement but at the cost of a huge blow-up in the signature time and size.

It is only recently that practical stateless constructions have been proposed.
In 2015, Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou,
Schneider, Schwabe and Wilcox-O’Hearn [BHH+15] proposed sphincs, a hash-
based signature scheme which achieved both statelessness and a reasonable
efficiency (with respect to the running time and signature size) by combin-
ing the constructions of Goldreich and Merkle, and using a few-time signa-
ture scheme. In 2017, two variations of sphincs were proposed to NIST’s call
for post-quantum cryptographic schemes [NIS16]: gravity-sphincs [AE17b] by
Aumasson and Endignoux, and sphincs+ [BDE+17] by Bernstein, Dobraunig,
Eichlseder, Fluhrer, Gazdag, Hülsing, Kampanakis, Kölbl, Lange, Lauridsen,
Mendel, Niederhagen, Rechberger, Rijneveld and Schwabe.

Hash functions can be implemented very efficiently on constrained devices
and it is not surprising that several implementations of hash-based signatures
on micro-controllers have been proposed [RED+08,HBB12], including an ARM
implementation [HRS16] of sphincs. However, embedded devices are known to
be sensitive to physical attacks such as side-channel analysis or fault attacks.

Since the seminal article of Boneh, DeMillo and Lipton [BDL97], fault attacks
have proved to be the strongest kind of cryptanalysis on embedded devices. In
a fault attack, we suppose that the attacker is strong enough to corrupt the
internal state of an algorithm during its execution. While this supposes a rather
powerful attacker, these conditions can often be fulfilled in real life and generally
result in devastating attacks. However, to the best of our knowledge, no fault
attack against hash-based signatures has been publicly proposed.

1.1 Our contribution

At a very high level, the sphincs framework (in this document, this notion
encompasses the original sphincs scheme, as well as gravity-sphincs and
sphincs+) combines hash trees and several one-time signature schemes (OTS)
inside a tree data structure in order to obtain a stateless signature scheme. We
propose the first fault injection attack against the sphincs framework. The at-
tack is done in two steps, a faulting part and a grafting part:

1. The faulting step. Two signatures for the same message are queried. During
the second signature computation, a fault is provoked so that an OTS inside
the sphincs framework ends up signing a different value than the first time.
Usually, an OTS key is only used to sign a single value, but our fault attack
compels it to do otherwise.

2. The grafting step. We show that the knowledge of the two signatures – the
correct one and the faulted one – can be exploited to recover parts of the
secret key of the OTS which was subjected to the fault, and therefore to
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partially compromise it. In turn, an attacker will use this compromised OTS
as a mean to authenticate a tree different from the one it is supposed to
authenticate.
The attacker then generates a tree which is entirely under its control, and
will use the compromised OTS to graft it to the sphincs tree, which is why
we call this step the grafting step.

The grafted tree is chosen by the attacker and independent from the secret
key, while allowing to generate valid signatures for some messages. We show
that it is more than enough to provide universal forgery ability to an attacker
while explaining how she can achieve it. The attack requires little power from
the attacker – which makes it practical – and produces valid signatures, which
renders it particularly stealthy.

Whereas this attack comes with a non-negligible computational cost for each
forgery, we propose trade-offs to lower this cost by slightly increasing the number
of faulted signatures available to the attacker. Our attack is generic in the sense
that it targets the sphincs framework: it is successful regardless of the underlying
hash function used, and is indifferent to the specificities of the original sphincs,
gravity-sphincs or sphincs+.

1.2 Roadmap

First we will introduce the notions related to trees. In section 2, we will give a
quick overview of hash-based signatures constructions. Then we will describe our
attack in section 3. The grafting step will be presented before the faulting step,
as it only requires two signatures by the same OTS and is indifferent to whether
they were obtained through a fault attack. We will then discuss countermeasures
in section 3.4. Section 4 will conclude this paper and expose open questions.

1.3 Related works

Our grafting technique relies on and extend a result by Groot Bruinderink and
Hülsing [GBH16] about the security of common OTS’s under two-message at-
tacks.

Due to their relative novelty, the resistance of post-quantum cryptographic
schemes against fault attacks has only recently been studied. A wide array of
attacks against lattice-based schemes has been covered in [BBK16], and a loop-
abort attack has been demonstrated in [EFGT16]. For schemes based on su-
persingular isogenies, loop-abort and point decompression attacks have been
investigated in [BG15,Ti17,GW17]. While we know of no fault attack against
hash-based signatures, countermeasures have been studied in [MKAA16].

Hash functions have been targeted by fault attacks on their keyed opera-
tion modes. Notably Hemme and Hoffmann [HH11] propose a differential fault
analysis allowing the attacker to recover the internal state of a SHA-1 instance
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using about 1000 faulted hashes with the fault targeting a specific variable in the
computation. A similar attack targeting SHA-3 was presented in 2015 [BGS15].
This attack involves random single bit faults on 80 messages to recover most of
the SHA-3 internal state. In comparison, our attack requires only one fault, and
the precision needed by the attacker in order to succeed is very low.

2 Preliminaries

We first set up the notations, then introduce the security models used for signa-
ture schemes and present Merkle’s and Goldreich’s constructions.

2.1 Notations and conventions

We denote by λ the security parameter of a signature scheme. H : {0, 1}∗ →
{0, 1}λ denotes a cryptographic hash function. We will note vectors in bold
lowercase. Whenever we consider faulting the value of a vector v, we denote by
v? the faulted value of v.

2.2 Dendrologic notations

We recall notions related to trees. We suppose that the definitions of (balanced)
binary tree, parent, child, sibling, root, leaf and internal node are known.

We denote by &f the address of a leaf f. The height of a tree is the length
of the longest path between the root and any node. Two nodes are at the same
height (resp. in the same layer, resp. at the same level) if they lie at the same
distance from the root.

In this article, we also deal with hypertrees, which are trees whose nodes are
trees. The height of a hypertree is the sum of the largest heights of each layer.
To avoid confusion between the hypertree and the node trees, we will refer to
the layers of the hypertree and the levels of the node trees.

As an example, Figure 3 depicts a toy version of a sphincs hypertree. This
example has 2 layers of height 2, hence it has a total height of 4. sphincs-256
has 12 layers of height 5, so its total height is 60.

2.3 Security models for signature schemes

We briefly recall some classical security notions for signature schemes.

Definition 21 Existential forgery – An adversary is able of existential forgery
if there exists a message m such that she can exhibit a valid (message, signature)
pair (m, σ∗) where σ∗ was not produced by the legitimate signer.

Definition 22 Universal forgery – An adversary is able of universal forgery if
for any message m, she can exhibit a valid signature σ∗.

Any attacker able of universal forgery is able of existential forgery. For more
formal notations, we refer the reader to e.g. [GBH16].
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2.4 Hash-based signatures

Hash-based signatures stem from a very simple idea: the public key is a commit-
ment of the secret key, whereas the signature of a message consists of revealing
some information from which the verifier can recompute the commitment.

A simple way to build a hash-based one-time signature (OTS) can be defined
as follows. Given a hash function H, let a secret key S = (S1, S2) and the message
space be J0,M − 1K for an integer M . The public key is

P = (P1, P2) = (HM (S1), HM (S2)).

The signature of a message m ∈ J0,M − 1K is

σ = (σ1, σ2) = (Hm(S1), HM−m(S2)).

The verifier only needs to check that

(σM−m1 , σm
2 ) = (P1, P2).

This scheme is one-time if H is preimage-resistant. However, it is not two-time,
since given signatures for messages m1 < m2 one can compute signatures for any
m1 < m3 < m2, thus breaking existential unforgeability.

We draw the readers’ attention to the fact that in the scheme we presented,
the public key can be computed from any valid signature. This is a common
feature among hash-based signatures and will effectively be the case for all the
schemes considered in this paper. From this feature, one does not need the public
key if it is able to authenticate it. It allows to derive many-times signatures
schemes from OTS by computing signature trees.

In the rest of this section, we present an OTS, two few-times signatures (FTS)
and two many-times signatures, a stateful one and a stateless one.

2.4.1 An OTS: WOTS
wots is a one-time signature whose principle was enunciated by Merkle [Mer90]

following an idea from Winternitz. It is parameterized by three values:

– w: the size of the words used by wots
– `1: the fixed number of words of size w of the messages to be signed
– `2: the fixed number of words of size w of the parity-check value used in the

signature algorithm.

Let ` = `1 + `2 be the fixed number of words of size w of the signature. We
can now detail wots.

• Keygen()

1. Let sk = (si)i=1,...,` where the si are uniformly random w-bits words;
2. For 1 6 i 6 `, pi ← Hw−1(si);
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3. public key: pk← (p1, . . . , p`), private key: sk.
• Sign(m, sk)

1. Express m in base w: m = (m1m2 . . .m`1)w;

2. Compute the parity-check value C ←
∑`1
i=1(w − 1−mi);

3. Express C in base w: C = (C1C2 . . . C`2)w;
4. b = (b1, b2, . . . , b`)← (m1, . . . ,m`1 , C1, . . . , C`2) – we will later call it the
b-vector of m;

5. For 1 6 i 6 `, σi ← Hbi(si);
6. signature: σ ← (σ1, . . . , σ`).

• Verify(m,σ, pk)
1. Compute the b-vector of m as in the signature algorithm (steps 1-4);
2. Accept if and only if ∀i ∈ J1, `K, pi = Hw−1−bi(σi).

Remark 1. gravity-sphincs implements the unmasked version of wots de-
scribed above, but sphincs(+) replaces wots by a variant, wots+, which uses
random masks in order to replace collision resistance by second preimage resis-
tance. Since our attack is indifferent to the presence of masks, we present it only
in the case of the mask-less scheme (wots) as it makes our exposition simpler.

Parameters: In practice, sphincs-256 (it is the practical instantiation of sphincs
proposed in [BHH+15]), gravity-sphincs and sphincs+ set: `1 = 64,

`2 = 3,
w = 16.

These parameters offer a good trade-off between size and speed and are usually
chosen in the most recent constructions.

In [GBH16, Section 5], the authors study (among other scenarii) wots resis-
tance against existential forgery under two-random-message attacks. They argue
that the probability of being able to forge the signature of a random message
m3 knowing the signature of two known random messages m1 and m2 is roughly
equal to the probability that for all 0 6 i < `, the i-th coordinate of the b-vector
of m3 is lower that the i-th coordinate of the b-vector of m1 or m2. We will see
that this existential forgery on wots can be extended to a universal forgery on
the sphincs framework in section 3.1.

2.4.2 FTS
In order to expand an OTS construction to a FTS signature scheme, one can

generate many OTS, link the public keys using an authentication tree and use
the root of this tree as public key. To sign a message, the signer only needs to
choose a subset of the OTS generated and sign the message with each of them.
The verifier only has to recover the various public keys from the signatures and
to check if the public key is equal to the authentication value associated with
the public keys and the corresponding authentication path.

All three algorithms based on the sphincs framework make use of different
FTS. In the context of our attack, one only needs to keep two facts in mind:
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– just like wots, the FTSs are entirely deterministic;
– in each of these FTSs, the public key can be directly computed from a valid

signature.

2.4.3 A stateful construction: Merkle’s scheme
Merkle’s scheme [Mer90] is based on hash trees, which are (generally balanced)

binary trees in which each internal node is defined as the hash of its two concate-
nated child nodes. In Merkle’s construction, each leaf of a hash tree is an OTS
public key: such a hash tree is called a Merkle tree. The public key for Merkle’s
scheme is the root of the Merkle tree and the private key is the set of all the
OTS private keys paired with the OTS public keys.

For a leaf f of a Merkle tree, we denote by A(f) and call authentication path
of f, the unique set of nodes (with one node per level, excluding the root) such
that the root of the Merkle tree can be recomputed from f and A(f).

To sign a message, the signer chooses an unused OTS key pair (ski, pki) in
a leaf of the Merkle tree: he signs m with ski and sends the signature together
with pki and its authentication path A(pki). The receiver verifies that: 1) the
message’s signature using the OTS is valid, and 2) the general public key (which
is the root of the Merkle tree) can be recomputed from pki and A(pki).

This scheme has two major drawbacks. First, the signature time – or memory
requirement – is exponential in the tree height, since the whole tree must either
be stored or recomputed each time a signature is performed.1 Second, the signer
must keep track of the used OTS key pairs, which makes the scheme stateful.

2.4.4 A stateless construction: Goldreich’s signature
Goldreich’s proposal [Gol86] solves the two aforementioned issues: it is still

based on a binary tree whose leaves are OTS public keys, but internal nodes are
now OTS key pairs. Each node of the tree is uniquely indexed by a bitstring
which is used, together with a seed which is part of the overall private key, to
pseudo-randomly generate the node’s key pair.

The scheme’s public key is the root’s public key and its private key is com-
posed of the root’s private key and the seed referred to above. To sign a message,
one randomly selects a leaf and then signs the message with this key pair. Each
node (specifically the public key inside) between this leaf and the root is then
signed, together with its sibling node, by its father node. The verifier accepts if
and only if all the signatures are valid.

The drawback of this approach is the signature size. For 128 bits of pre-
quantum security, one needs a 256-layer tree; using for example a Winternitz
OTS with parameter w = 16 (see section 2.4.1) and a hash function with a
256-bit output, the signature size reaches 1.65 MB.

1 There exist techniques which get rid of exponential running time at the expense of
somewhat increasing state size, such as the tree traversal algorithm of [BDS08].
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Figure 1: A Merkle tree. Two merg-
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Figure 2: A Goldreich tree. In addition
to the notations of Figure 1, a dashed
arrow means ”the leaf signs the root
below”.

2.5 SPHINCS

The aim of sphincs is twofold: to achieve moderate signature time and size, and
to get rid of any kind of state. To reach this goal, the sphincs tree is designed
as a Goldreich tree whose nodes are Merkle trees.

In this new configuration, each leaf in a Merkle tree is used to sign the root of
a Merkle tree located in the layer below. Such a construction can also be found
in GMSS [BDK+07] and XMSS [BDH11,HRB13]. Moreover, leaves of a sphincs
tree sign a public key of a few-time signature (FTS) scheme, which security is
not compromised if the same key pair is used on few different messages. This is
summarized in Figure 3.

In order to have a quick overview of sphincs, one can see it as a combination
of 3 types of trees. Namely:

1. The sphincs hypertree: a Goldreich tree of height h (60 in sphincs-256)
organised in d layers (12 in sphincs-256). Each layer’s leaf signs the root of
a Merkle tree.

2. Merkle trees of size h/d (= 5 in sphincs-256) whose leaves are public keys
for the OTS used in the Goldreich construction: wots.

3. The FTS used to sign the message is signed by the last layer of the hypertree.

We now delve a bit deeper into sphincs’s machinery.
A sphincs tree of height h can be seen as a Goldreich tree of d layers with

Merkle trees of height h/d instead of nodes. In [BHH+15], a few modifications
have been made to the Merkle tree construction described in section 2.4.3. One
of them is important for our work: in the leaves of sphincs’s Merkle subtrees,
all wots public keys are compressed as follows: their ` parts are considered as
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Figure 3: A sphincs hypertree of height 4, which can be seen as a Goldreich
tree of two layers with Merkle trees of height 2 in node places. In addition to
the notations of Figures 1 and 2, gray discs denote FTS instances (horst for
the original sphincs, porst for gravity-sphincs, fors for sphincs+).

leaves of a binary hash tree; this tree’s root is then computed applying this rule:
if a node has no sibling, then it is lifted to a higher level in the tree until it has
one. The tree’s root stands as the compressed wots public key.

Like in Goldreich’s construction, where each node is indexed, each leaf has
an address in sphincs, which contains its layer in the sphincs hypertree, the
number of its Merkle tree in the layer and its position in the Merkle tree.

We now describe the original sphincs signature scheme (which we will call
o-sphincs to disambiguate it from the sphincs framework).

• Keygen()
Pick a pair of seeds (S1, S2) ∈ {0, 1}λ × {0, 1}λ at random and generate the
top Merkle tree (the one in layer d− 1), whose root is the overall public key
pk. The private key is sk← (S1, S2).

• Sign(m, sk)

1. Generate 2 pseudo-random values (R1, R2) ∈ ({0, 1}λ)2 from m and S2;
2. Compute D = H(R1||m);
3. idx← the h leftmost bits of R2;
4. Generate the horst key pair of index idx;
5. σH = signature of D using this horst key pair;
6. σ0 = signature of the horst public key using the wots key pair at layer

0, which is (in compressed form) in the leaf f0 with &f0 = d||idx ;
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7. For 1 6 i < d, σi = signature of the root of the Merkle tree containing
fi−1, using the wots key pair in the appropriate leaf fi of the layer i;

8. signature: σ = (idx, R1,σH ,σ0, A(f0),σ1, A(f1), . . . ,σd−1, A(fd−1)).
• Verify(m,σ, pk)

1. Compute D = H(R1||m);
2. Compute the horst public key assuming σH is valid;
3. For 0 6 i < d:

(a) assume that the wots signature σi is valid and deduce a wots
public key from it and from the root computed the step before2;

(b) assume that A(fi) is correct and compute the root of its Merkle tree;
4. compare this last root to the sphincs public key: accept if and only if

they are equal.

2.6 Gravity-SPHINCS and SPHINCS+ modifications

gravity-sphincs was proposed in [AE17b], with several changes to o-sphincs
aiming at improving its performance and signature size. The changes relevant to
our attack are the following:

1. The top layer of the hypertree is now cached as it is always used in the
signature algorithm, and its height is increased from 5 to 20 (thus lowering
the number of layers in the hypertree). As a result, the number of leaves in
the topmost Merkle tree is increased from 32 to 220.

2. The index of the FTS instance is now derived directly from the message
and a public salt computed by the signer from its secret key (this is well
summarized in [AE17a, Figure 3]). As a consequence, the verifier can verify
the index and the attacker cannot choose it anymore – but we will see that
it is easy to get around this protection.

Independently, sphincs+ was proposed in [BDE+17]. The modification rele-
vant to our attack is that the message digest md and FTS index idx are computed
as

(md‖idx)← H(r, pk,m), (1)

where r is a public salt generated by the signer from the message and a private
seed. This change in index generation is similar to the one of gravity-sphincs.
For simplicity, this document will only focus on the parameter sets targeting
NIST’s security level 1.

We will see that these modifications, while theoretically increasing the cost
of our attack, actually have a very limited impact on its efficiency.

Parameters. o-sphincs, gravity-sphincs and sphincs+ propose parameters
to provide 128 bits of quantum security against existential forgery (assuming 256-
bits messages). Table 1 summarizes these parameters.3 We note that [AE17b]
proposed several trade-offs between efficiency and signature size, as well as vari-
ations on the number of signatures allowed by the context.

2 Which is the value whose signature is σi.
3 We choose the NIST-oriented version of gravity-sphincs according to [AE17b].
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Scheme Security w ` h d Sig. size (kB)

o-sphincs 128 16 67 60 12 41

gravity-sphincs 128 16 67 60 6 27

sphincs+-128f 128 16 67 60 20 17

sphincs+-128s 128 16 67 64 8 8

Table1: Parameters for o-sphincs, gravity-sphincs and sphincs+

3 A grafting attack against the SPHINCS framework

In this section we propose a new kind of attack against the hyper-tree structure
of the sphincs framework. The goal of this attack is to insert a branch under
our control below a leaf fd−1 (which is an OTS public key) of the top layer. In
order to do this, one must be able to provide a signature for the root of the
branch which is valid for the key fd−1. Once the root is authenticated – and the
branch grafted, one has total control over the branch and can easily modify any
of the nodes inside, both by modifying the seed used for its generation and by
randomizing unverifiable values.

In the rest of this section we will detail the principles of the grafting attack
and its implications in terms of security. Finally, we will provide a practical fault
attack that leads to a universal forgery on the sphincs framework, and we will
discuss different complexity trade-offs. At last we will provide a short overview
of the possible countermeasures to our attack.

3.1 Grafting a branch in the SPHINCS hyper-tree

Let us target a leaf fd−1 of the top layer of the hyper-tree. We suppose that
the corresponding wots key has signed two different values, which the attacker
knows along with their signatures. According to [GBH16], she is able to forge
a wots signature with a probability pw ≈ 2−34. We convert this existential
forgery capability against wots into a universal forgery capability against any
sphincs-style scheme. In order forge a message m, we proceed as follows:

1. Randomly generate a seed such that the index of the FTS to be used falls
under the targeted wots instance. It happens with probability pf, where pf
is 1 for o-sphincs,4 2−20 for gravity-sphincs,5 and 2−3 (resp. 2−8) for
sphincs+-128f (resp. -128s).

2. From this seed and the message m, compute the signature up to the penulti-
mate layer of the hyper-tree. With probability pw, the root of the layer can
be signed by the attacker capacity on the corresponding wots signature.

4 o-sphincs provides the verifier no mechanism to check that the FTS index is valid.
An attacker can therefore directly pick a suitable index, hence the probability 1.

5 The probability to find such a seed is equal to the inverse of number of leaves in the
top-most layer of the hyper-tree, which is 2−20 for gravity-sphincs.
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3. Complete the signature using the legitimate authentication path of the signer,
known from the legitimate signature of any message whose authentication
path in the hyper-tree goes through fd−1.

The naive way to achieve the forgery described above is to randomly choose
the seed (from which are generated the OTS and all the FTS used during the
signature) in order to fulfill two requirements:

1. the FTS used is under the targeted wots instance: this happens with the
probabilities pf stated in section 3.1.

2. the attacker can sign the root of the Merkle’s tree used in the penultimate
layer with the targeted wots secret key: this happens with probability pw.

To find a seed which simultaneously fulfills both requirements, an attacker
needs to try about 1/pfpw seeds for each message. These trials can be done
entirely offline. We note that the number of hash computations is even higher
as every trial costs around 215 hashes. However, it is possible to do better.

Indeed, even though an honest signer generates (the OTS secret keys corre-
sponding to the leaves of) Merkle trees with a private seed, there is no way a
verifier can check that this was effectively the case. Therefore, the search of a
suitable Merkle tree for the penultimate layer (by suitable, we mean that its root
can be signed with the targeted wots key) can be decorrelated from the search
for a suitable FTS index. This makes the number of trials drop from 1/pfpw to
1/pf + 1/pw.

In addition, a signature does not contain whole Merkle trees but only, for
each of them, a leaf fi

6 and its authentication path A(fi); this reduces signature
size as well as verification time. However, it also allows to speed up forgery as
the attacker does not have to generate a suitable Merkle tree but only a leaf fd−2
and an authentication path A(fd−2) which looks like an authentication path in
a suitable Merkle tree. To do this, the attacker can simply choose all the values
of A(fd−2) at random, except the last one. She then tries several values for this
last value, until the root computed from fd−2 and A(fd−2) can be signed with
fd−1. With this improvement, each new trial now costs one hash instead of 215

hashes.

With these improvements, the cost of a forgery on any sphincs scheme drops
from up to 215/pfpw hashes down to 1/pf + 1/pw hashes. As an illustration, this
represents a drop from 269 to 234 for gravity-sphincs.

3.2 Fault Injection against the SPHINCS Framework

As we have been seen before, the entire attack depends on the capability of the
attacker to obtain two distinct wots signatures for the same secret key. In the
context of the sphincs framework, the whole construction of the hyper-tree is

6 Precisely, the signature contains a wots signature from which one can recover fi.
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deterministic and a signature is entirely dependent of both the message and the
secret key. This characteristic leads to the fact that no OTS can sign distinct
messages, thus ensuring the security of the scheme.

In the following we present a fault injection attack allowing an attacker to
recover the signature of two different messages with the same wots key.

Let us denote sk = (s1, s2, . . . , s`) the targeted wots secret key corre-
sponding to fd−1 and δ the Merkle tree root authenticated by it. We ask for
the signature of a message m about which we suppose, without loss of gener-
ality, that at the last step it requires signing δ. We note δ’s wots signature
σd−1 = (σd−1,1, . . . σd−1,`). We receive the overall signature

σ = (idx, R1,σH ,σ0, A(f0), . . . ,σd−1, A(fd−1)).

In the next step, we will ask again the signature of the same message m. As
the algorithm is entirely deterministic, the resulting signature should be the same
as σ. However we will perturb the operations done in the computation of the
authentication path A(fd−2). This perturbation will result in the computation
of a Merkle tree root δ? distinct from δ. The resulting wots signature σ?d−1
of δ? gives the attacker the possibility to mount the grafting attack as shown
previously. An overview of the fault can be seen in Figure 4.

A nice feature of the fault model is that it is a very weak one. Indeed it
verifies the following properties:

– only a single fault is needed per signature as a single fault in the computation
of the Merkle tree of the penultimate layer fulfills the required modification;

– the fault is very permissive as we do not use the actual value of the faulted
variable: we need the variable to change but do not need to know the actual
value of the change;

– the fault can be done in a wide time period. Indeed, since the verification
algorithm uses A(fd−2) to compute δ?, this authentication path must be
faulted: otherwise, the attacker would deduce from it the legitimate root δ
instead of the faulted one δ?. This implies that one cannot directly fault the
nodes which computations are redone by the signature verifier, but faulting
all the other nodes will lead to a successful attack. In other words, one can
fault any node “below” the authentication path, whereas it is not of interest
for our purposes to fault any node “above”. In practice, it means that, in
o-sphincs 33 227 hash computations may eventually be the target of the
fault while 273 352 hash computations are available as targets in gravity-
sphincs with parameters given in Table 1.

These numbers stands for roughly 6% of the whole o-sphincs computation
and 18% of the whole gravity-sphincs7.

7 If the top layer of gravity-sphincs is not cached, this percentage falls drastically
but gravity-sphincs also becomes very slow for these parameters, requiring about
230 hashes per signature.



14

PK

...
H0

...
pk00

δF

H000

pk0000

FTS

pk0001

FTS

H001

pk0010

FTS

pk0011

FTS

*

*

*

*

*

*

*

*

*

*

*

HF
001

pkE0011

Faulted tree

Grafted tree

Figure 4: Principle of our attack with a sphincs hyper-tree of height 4. Fault
injection is denoted by a lightning and the affected elements of the faulted Merkle
tree by a star. We note that the public key PK is not affected. The part of the
hyper-tree which is below vertical dots is irrelevant to our attack.

Remark 2. The faulted overall sphincs signatures produced by this attack are
valid. Indeed, σ?d−1 is the valid signature of δ?, computed from A(fd−2)?, which is
given in the overall signature σ?. Moreover, all other elements of σ? are correct.
Thus σ? is accepted by the verification algorithm.

3.3 Compromise between faulted signatures and computational
power

We have seen that one can achieve universal forgery on the existing schemes
of the sphincs family at the price of one faulted signature. However, each of
the signatures forged comes at a non-negligible computational cost as one needs
to try about 1/pw ≈ 234 values for the penultimate Merkle tree root (see sec-
tion 3.1) to be able to use the capacity on wots. In this section we provide
trade-offs between the number of faulted signatures allowed to the attacker and
the computational cost needed to forge a signature.

3.3.1 Total break on WOTS
First, we estimate how many faulted signatures are necessary to recover an

entire wots private key.
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It is safe to model H as a random oracle. As a consequence of this hypothesis,
when the computation of δ is faulted, δ? takes a uniformly random value between
0 and 2λ − 1. Each bi for 1 6 i 6 `1 is therefore 0 with probability 1/w.

Then the checksum C follows the law of a sum of `1 = 64 random variables
(r.v.) following the uniform law over 〚0, w−1〛 which, thanks to the central limit
theorem, we shall approximate by a normal law with parameters µ = `1(w−1)/2
and σ2 = `1(w2 − 1)/12.

Let us write C in base w in the big-endian convention. Then bi = 0 for
`1 < i 6 ` means C mod wj < wj−1 with j = i− `1. This event has probability:

P(C mod wj < wj−1) =

b`1(w−1)/wjc∑
q=0

qwj+wj−1−1∑
z=qwj

P(C = z),

with P(C = z) = ρµ,σ(z)/
∑
n∈Z ρµ,σ(n), where ρµ,σ(x) = exp(−(x−µ)2/(2σ2)).

We obtain P(b65 = 0) ≈ 1/w,P(b66 = 0) ≈ 0.098,P(b67 = 0) ≈ 2−30.7. This
last value calls for a remark. It means that we have to ask for 230.7 signatures in
average to get s67, which is a lot, but, in the same time, we need s67 to sign a
root with probability 2−30.7. So, with respect to s67, we can only look for H(s67).
Given the very high probability of finding this value (P(b67 = 1) ≈ 0.80), we shall
suppose that the average number of signatures required to recover s1, . . . , s66 is
high enough to find H(s67) with overwhelming probability, and therefore we do
not care about s67 anymore. We will later see that this is verified in practice.

Finally, we rely on the values of P(b65 = 0) and P(b66 = 0) to justify this ap-
proximation which will be done hereafter: b1, b2, . . . , b66 are viewed as 66 uniform
deviate in 〚0, w − 1〛.

Let us now consider the number of signatures required on average to carry out
the attack. Let X be the random variable which models the number of requested
signatures to find sk (except s67). Our problem then boils down to computing
E(X).

Let {σ(1)?,σ(2)?, . . . ,σ(n)?} be the set of the n requested faulted signatures

at a certain point in the attack. We define: V
(n)
j :=

{
σ
(i)?
d−1,j | 1 6 i 6 n

}
, that

is, the set of values taken by the jth coordinate of all received σ
(i)?
d−1’s, when

the attacker has gathered n faulted signatures. We also define the event Bn :=

{∃1 6 j < ` s.t. sj /∈ V (n)
j }. It can be shown that P(X = n) = P(Bn−1 ∩ Bn)

and that it leads to:

P(X = n) = P(Bn)− P(Bn−1). (2)

Since the coordinates of σ?d−1 are pairwise independent and follow the same
uniform law over 〚0, w − 1〛 by assumption, we have:

P(Bn) =

`−1∏
j=1

P
(
sj ∈ V (n)

j

)
=

(
1−

(
w − 1

w

)n)`−1
. (3)
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Composing equations 2 and 3 with the parameters set in the sphincs schemes,
we estimate that E(X) ≈ 74.5. Note that this leads to a probability to findH(s67)
greater than 1− 2−170, which is indeed more than enough to do so.

One whole wots private key can thus be recovered querying 74.5 faulted
signatures on average for the parameters used in the sphincs schemes.

3.3.2 Trade-offs
We have seen that the attack can be mounted with only one faulted signature,

with a non-negligible computational cost needed to forge every signatures, or that
an attacker can make about 75 faulted signatures to ensure a free selection of
the Merkle tree root. We now investigate the various trade-offs we can obtain by
increasing step by step the number of faulted messages available to the attacker.

For this purpose, we extend Hülsing and Groot Bruinderink’s [GBH16] rea-
soning. Let us denote by δ the root which wots signature we want to forge, and
by δ(1), δ(2), . . . , δ(n) n uniformly random roots for which we have valid signa-
tures by the same wots private key. Let b = (b1, . . . , b`) be the b-vector of δ

and b(i) = (b
(i)
1 , . . . , b

(i)
` ) be the b-vector of δ(i) for all 1 6 i 6 n. Then we can

forge a valid wots signature for δ if and only if the following expression is true:

∧̀
j=1

n∨
i=1

{bj > b
(i)
j }.

In order to estimate the probability of this event, we make the assumption
that coordinates of the b-vector of a uniformly random word are pairwise in-
dependent and uniformly distributed in 〚0, w − 1〛. If this assumption is clearly
true for the first `1 coordinates, it is clearly not for the last `2 ones. However,
we shall see later that the resulting theoretical probabilities are very close to
probabilities obtained by simulations. Thus we work with this assumption for
the sake of simplicity.

Moreover, we make the assumption that random roots δ(i) are pairwise in-
dependent, i.e. that corresponding b-vectors are pairwise independent. By coor-
dinates independence assumption:

P
(∧`

j=1

∨n
i=1{bj>b

(i)
j }
)
=P
(∨n

i=1{bj>b
(i)
j }
)`

=
(
1−P(bj<b(1)j )n

)`
=(1− 1

wn+1

∑w−1
a=0 a

n)
`
, (4)

the second equality coming from b-vectors independence assumption and the last
one by identical distribution assumption. Table 2 presents the average number
of roots to try before finding one whose signature can be forged, based on the
number of faulted signatures the attacker has – note that the attacker is supposed
to have the legitimate signature in addition to the faulted ones. The numbers
are obtained from equation 4, and are matched by experiments.

We can observe that the computational complexity of the forgery of a message
m is essentially the sum of the complexities of three operations:
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Faulted signatures 1 2 3 4 5 10 20

Number of trees to try 234.9 224.0 218.0 214.2 211.7 25.5 22.0

Table2: Number of grafted trees to generate randomly before finding one that can
be signed by the faulted OTS, in function of the number of faulted signatures.
We note that for 1 faulted signature, this number is 1/pw.

– the number of seeds to try to assign a satisfying index to the message – from
1 for o-sphincs to 220 for gravity-sphincs;

– the number of Merkle tree root values to try before being able to forge the
wots signature – depending on the number of faulted signatures, see Table 2;

– the complexity of the signature8.

With this observation, we can state that only 3 faulted messages are needed to
provide universal forgery against gravity-sphincs at the cost of about 220 hash
computations.

3.4 Countermeasures

Generic countermeasures such as making the signature computation redundant
can complicate our attack, but they may incur a significant overhead (for redun-
dancy, a factor 2 in time and space). Indeed, a simple verification of the signature
would not be efficient in our case as the attack provides valid signatures. More-
over, only a small part of the execution will be faulted and thus the redundancy
must be checked for each of the roots of a Merkle sub-tree. However redundant
computation is an efficient way to significantly constrain the attacker to a more
powerful model as the fault should be exactly replicable on both executions. As
generic countermeasures are well documented, our discussion will focus on the
countermeasures that are specific to the sphincs framework.

In [MKAA16] the authors propose a specific recomputation designed to avoid
faults in Merkle trees, called Recomputating with Swapped Nodes (RESN).
Whereas the countermeasure provides efficient security at an acceptable overhead
by lightly pipelining the circuit, it does not cover the Goldreich construction.
The main impact to our attack additionally from classical recomputation meth-
ods is that it limits the fault to targeting only the computation of the root of
the Merkle tree as any other faulted hash computation would be detected by the
RESN. We note that, in this case, the faulted signature will not be a valid one
anymore and the result could be verified with an additional overcost.

A näıve way to protect sphincs against our attack would be to compute
the index of the FTS from public values instead of secret ones. Indeed, if one

8 The complexity of the forged signature can be slightly lowered because the attacker
does not need to compute valid values for the authentication path and can simply
generate random values.
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computes the index from the message and the public key, the attacker is not
able anymore to choose the index of the message to sign.

However, the cure would be worse than the disease. Indeed, while our attack
would be thwarted by this modification, a malicious user would now be able to
provoke multi-collisions on the index idx of the FTS by trying several messages.

In the schemes studied, the number of FTS leaves is upper bounded by 264.
This implies that given a fixed value for the index idx, an attacker can find
k messages leading to this index with a computational effort about k × 264.
Therefore, this modification would lead to universal forgeability of the targeted
schemes without any fault.

An efficient countermeasure would be to somehow link the different layers
of the hyper-tree so that a fault in the computation of the tree would result in
a non valid signature, i.e. a root value distinct from the public key. A simple
check of the validity before returning the signature would prevent any fault
attack. However, in order to link these layers, one cannot compute the OTS keys
only from its index and the secret key, so the whole hyper-tree would have to be
recomputed for each signature, ensuing a huge overhead in signing time.

4 Conclusion and Open Questions

In this paper we propose the first fault attack against signature schemes of the
sphincs family. After an initial cost of a single faulted message, it allows to forge
signatures for any message at an (offline) cost of 234 hashes per message.

We proposed several trade-offs to lower this computational cost while slightly
increasing the number of faulted messages. For any of the targeted schemes, we
can forge any message at a cost of about 220 hashes functions knowing only 3
faulted messages. Moreover, the fault model is very permissive.

While our attack can be thwarted by generic (but possibly costly) counter-
measures against fault attacks, we did not find any specific countermeasure.

As demonstrated by this work, the deterministic nature of several hash-based
signatures and their internal use of OTS can be a weakness against fault attacks.
On the defensive side, an interesting line of work would be to propose hash-based
constructions which offer some innate resilience against fault attacks.

On the offensive side, a natural extension of this work would be to implement
the proposed fault attack in practice. Our attack target the sphincs framework,
but it would be interesting to extend it to other multi-tree constructions such
as multi-tree XMSS or GMSS. One could also devise an alternative way (other
than fault injection) to recover two distinct wots signatures for the same key,
which would allow to apply our grafting attack. We leave this for future work.
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